Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37645723

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) and α-synuclein share enigmatic roles in the pathobiology of Parkinson's disease (PD). LRRK2 mutations are a common genetic cause of PD which, in addition to neurodegeneration, often present with abnormal deposits of α-synuclein in the form of Lewy-related pathology. As Lewy-related pathology is a prominent neuropathologic finding in sporadic PD, the relationship between LRRK2 and α-synuclein has garnered considerable interest. However, whether and how LRRK2 might influence the accumulation of Lewy-related pathology remains poorly understood. Through stereotactic injection of mouse α-synuclein pre-formed fibrils (PFF), we modeled the spread of Lewy-related pathology within forebrain regions where LRRK2 is most highly expressed. The impact of LRRK2 genotype on the formation of α-synuclein inclusions was evaluated at 1-month post-injection. Neither deletion of LRRK2 nor G2019S LRRK2 knockin appreciably altered the burden of α-synuclein pathology at this early timepoint. These observations fail to provide support for a robust pathophysiologic interaction between LRRK2 and α-synuclein in the forebrain in vivo. There was, however, a modest reduction in microglial activation induced by PFF delivery in the hippocampus of LRRK2 knockout mice, suggesting that LRRK2 may contribute to α-synuclein-induced neuroinflammation. Collectively, our data indicate that the pathological accumulation of α-synuclein in the mouse forebrain is largely independent of LRRK2.

2.
NPJ Parkinsons Dis ; 9(1): 125, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37640722

RESUMO

Cognitive dysfunction is a salient feature of Parkinson's disease (PD) and Dementia with Lewy bodies (DLB). The onset of dementia reflects the spread of Lewy pathology throughout forebrain structures. The mere presence of Lewy pathology, however, provides limited indication of cognitive status. Thus, it remains unclear whether Lewy pathology is the de facto substrate driving cognitive dysfunction in PD and DLB. Through application of α-synuclein fibrils in vivo, we sought to examine the influence of pathologic inclusions on cognition. Following stereotactic injection of α-synuclein fibrils within the mouse forebrain, we measured the burden of α-synuclein pathology at 1-, 3-, and 6-months post-injection within subregions of the hippocampus and cortex. Under this paradigm, the hippocampal CA2/3 subfield was especially susceptible to α-synuclein pathology. Strikingly, we observed a drastic reduction of pathology in the CA2/3 subfield across time-points, consistent with the consolidation of α-synuclein pathology into dense somatic inclusions followed by neurodegeneration. Silver-positive degenerating neurites were observed prior to neuronal loss, suggesting that this might be an early feature of fibril-induced neurotoxicity and a precursor to neurodegeneration. Critically, mice injected with α-synuclein fibrils developed progressive deficits in spatial learning and memory. These findings support that the formation of α-synuclein inclusions in the mouse forebrain precipitate neurodegenerative changes that recapitulate features of Lewy-related cognitive dysfunction.

3.
bioRxiv ; 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37090590

RESUMO

Cognitive dysfunction is a salient feature of Parkinson's disease (PD) and Dementia with Lewy bodies (DLB). The onset of dementia reflects the spread of Lewy pathology throughout forebrain structures. The mere presence of Lewy pathology, however, provides limited indication of cognitive status. Thus, it remains unclear whether Lewy pathology is the de facto substrate driving cognitive dysfunction in PD and DLB. Through application of α-synuclein fibrils in vivo , we sought to examine the influence of pathologic inclusions on cognition. Following stereotactic injection of α-synuclein fibrils within the mouse forebrain, we measured the burden of α-synuclein pathology at 1-, 3-, and 6-months post-injection within subregions of the hippocampus and cortex. Under this paradigm, the hippocampal CA2/3 subfield was especially susceptible to α- synuclein pathology. Strikingly, we observed a drastic reduction of pathology in the CA2/3 subfield across time-points, consistent with the consolidation of α-synuclein pathology into dense somatic inclusions followed by neurodegeneration. Silver-positive degenerating neurites were observed prior to neuronal loss, suggesting that this might be an early feature of fibril-induced neurotoxicity and a precursor to neurodegeneration. Critically, mice injected with α-synuclein fibrils developed progressive deficits in spatial learning and memory. These findings support that the formation of α-synuclein inclusions in the mouse forebrain precipitate neurodegenerative changes that recapitulate features of Lewy-related cognitive dysfunction. Highlights: Mice injected with α-synuclein fibrils develop hippocampal and cortical α- synuclein pathology with a dynamic regional burden at 1-, 3-, and 6-months post-injection.Silver-positive neuronal processes are an early and enduring degenerative feature of the fibril model, while extensive neurodegeneration of the hippocampal CA2/3 subfield is detected at 6-months post-injection.Mice exhibit progressive hippocampal-dependent spatial learning and memory deficits.Forebrain injection of α-synuclein fibrils may be used to model aspects of Lewy-related cognitive dysfunction.

4.
Neurobiol Dis ; 1882023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38435455

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) and α-synuclein share enigmatic roles in the pathobiology of Parkinson's disease (PD). LRRK2 mutations are a common genetic cause of PD which, in addition to neurodegeneration, often present with abnormal deposits of α-synuclein in the form of Lewy-related pathology. As Lewy-related pathology is a prominent neuropathologic finding in sporadic PD, the relationship between LRRK2 and α-synuclein has garnered considerable interest. However, whether and how LRRK2 might influence the accumulation of Lewy-related pathology remains poorly understood. Through stereotactic injection of mouse α-synuclein pre-formed fibrils (PFF), we modeled the spread of Lewy-related pathology within forebrain regions where LRRK2 is most highly expressed. The impact of LRRK2 genotype on the formation of α-synuclein inclusions was evaluated at 1-month post-injection. Neither deletion of LRRK2 nor G2019S LRRK2 knockin appreciably altered the burden of α-synuclein pathology at this early timepoint. These observations fail to provide support for a robust pathophysiologic interaction between LRRK2 and α-synuclein in the forebrain in vivo. There was, however, a modest reduction in microglial activation induced by PFF delivery in the hippocampus of LRRK2 knockout mice, suggesting that LRRK2 may contribute to α-synuclein-induced neuroinflammation. Collectively, our data indicate that the pathological accumulation of α-synuclein in the mouse forebrain is largely independent of LRRK2.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Sinucleinopatias , Animais , Camundongos , alfa-Sinucleína , Modelos Animais de Doenças , Camundongos Knockout , Doença de Parkinson/genética , Prosencéfalo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo
5.
J Parkinsons Dis ; 12(5): 1423-1447, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35599495

RESUMO

BACKGROUND: Coding variation in the Leucine rich repeat kinase 2 gene linked to Parkinson's disease (PD) promotes enhanced activity of the encoded LRRK2 kinase, particularly with respect to autophosphorylation at S1292 and/or phosphorylation of the heterologous substrate RAB10. OBJECTIVE: To determine the inter-laboratory reliability of measurements of cellular LRRK2 kinase activity in the context of wildtype or mutant LRRK2 expression using published protocols. METHODS: Benchmark western blot assessments of phospho-LRRK2 and phospho-RAB10 were performed in parallel with in situ immunological approaches in HEK293T, mouse embryonic fibroblasts, and lymphoblastoid cell lines. Rat brain tissue, with or without adenovirus-mediated LRRK2 expression, and human brain tissues from subjects with or without PD, were also evaluated for LRRK2 kinase activity markers. RESULTS: Western blots were able to detect extracted LRRK2 activity in cells and tissue with pS1292-LRRK2 or pT73-RAB10 antibodies. However, while LRRK2 kinase signal could be detected at the cellular level with over-expressed mutant LRRK2 in cell lines, we were unable to demonstrate specific detection of endogenous cellular LRRK2 activity in cell culture models or tissues that we evaluated. CONCLUSION: Further development of reliable methods that can be deployed in multiple laboratories to measure endogenous LRRK2 activities are likely required, especially at cellular resolution.


Assuntos
Doença de Parkinson , Proteínas rab de Ligação ao GTP , Animais , Fibroblastos/metabolismo , Células HEK293 , Humanos , Leucina/genética , Leucina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Camundongos , Mutação , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fosforilação , Ratos , Reprodutibilidade dos Testes , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(29): 17296-17307, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32631998

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of late-onset, autosomal-dominant familial Parkinson's disease (PD). LRRK2 functions as both a kinase and GTPase, and PD-linked mutations are known to influence both enzymatic activities. While PD-linked LRRK2 mutations can commonly induce neuronal damage in culture models, the mechanisms underlying these pathogenic effects remain uncertain. Rodent models containing familial LRRK2 mutations often lack robust PD-like neurodegenerative phenotypes. Here, we develop a robust preclinical model of PD in adult rats induced by the brain delivery of recombinant adenoviral vectors with neuronal-specific expression of human LRRK2 harboring the most common G2019S mutation. In this model, G2019S LRRK2 induces the robust degeneration of substantia nigra dopaminergic neurons, a pathological hallmark of PD. Introduction of a stable kinase-inactive mutation or administration of the selective kinase inhibitor, PF-360, attenuates neurodegeneration induced by G2019S LRRK2. Neuroprotection provided by pharmacological kinase inhibition is mediated by an unusual mechanism involving the robust destabilization of human LRRK2 protein in the brain relative to endogenous LRRK2. Our study further demonstrates that G2019S LRRK2-induced dopaminergic neurodegeneration critically requires normal GTPase activity, as hypothesis-testing mutations that increase GTP hydrolysis or impair GTP-binding activity provide neuroprotection although via distinct mechanisms. Taken together, our data demonstrate that G2019S LRRK2 induces neurodegeneration in vivo via a mechanism that is dependent on kinase and GTPase activity. Our study provides a robust rodent preclinical model of LRRK2-linked PD and nominates kinase inhibition and modulation of GTPase activity as promising disease-modifying therapeutic targets.


Assuntos
Neurônios Dopaminérgicos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Modelos Animais de Doenças , Dopamina/metabolismo , Feminino , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Camundongos , Camundongos Knockout , Mutação , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/patologia , Fenótipo , Projetos Piloto , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Wistar , Substância Negra
7.
Hum Mol Genet ; 27(1): 120-134, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29088368

RESUMO

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset, autosomal dominant Parkinson's disease (PD). LRRK2 mutations typically give rise to Lewy pathology in the brains of PD subjects yet can induce tau-positive neuropathology in some cases. The pathological interaction between LRRK2 and tau remains poorly defined. To explore this interaction in vivo, we crossed a well-characterized human P301S-tau transgenic mouse model of tauopathy with human G2019S-LRRK2 transgenic mice or LRRK2 knockout (KO) mice. We find that endogenous or pathogenic LRRK2 expression has minimal effects on the steady-state levels, solubility and abnormal phosphorylation of human P301S-tau throughout the mouse brain. We next developed a new model of tauopathy by delivering AAV2/6 vectors expressing human P301S-tau to the hippocampal CA1 region of G2019S-LRRK2 transgenic or LRRK2 KO mice. P301S-tau expression induces hippocampal tau pathology and marked degeneration of CA1 pyramidal neurons in mice, however, this occurs independently of endogenous or pathogenic LRRK2 expression. We further developed new AAV2/6 vectors co-expressing human WT-tau and GFP to monitor the neuron-to-neuron transmission of tau within defined hippocampal neuronal circuits. While endogenous LRRK2 is not required for tau transmission, we find that G2019S-LRRK2 markedly enhances the neuron-to-neuron transmission of tau in mice. Our data suggest that mutant tau-induced neuropathology occurs independently of LRRK2 expression in two mouse models of tauopathy but identifies a novel pathogenic role for G2019S-LRRK2 in promoting the neuronal transmission of WT-tau protein. These findings may have important implications for understanding the development of tau neuropathology in LRRK2-linked PD brains.


Assuntos
Encéfalo/fisiologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Transmissão Sináptica/fisiologia , Proteínas tau/metabolismo , Animais , Encéfalo/metabolismo , Região CA1 Hipocampal/metabolismo , Modelos Animais de Doenças , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/biossíntese , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/deficiência , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mutação , Neurônios/metabolismo , Doença de Parkinson/genética , Fosforilação , Proteínas tau/genética
8.
Adv Neurobiol ; 14: 71-88, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28353279

RESUMO

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most frequent cause of Parkinson's disease (PD) with late-onset and autosomal-dominant inheritance. LRRK2 belongs to the ROCO superfamily of proteins, characterized by a Ras-of-complex (Roc) GTPase domain in tandem with a C-terminal-of-Roc (COR) domain. LRRK2 also contains a protein kinase domain adjacent to the Roc-COR tandem domain in addition to multiple repeat domains. Disease-causing familial mutations cluster within the Roc-COR tandem and kinase domains of LRRK2, where they act to either impair GTPase activity or enhance kinase activity. Familial LRRK2 mutations share in common the capacity to induce neuronal toxicity in cultured cells. While the contribution of the frequent G2019S mutation, located within the kinase domain, to kinase activity and neurotoxicity has been extensively investigated, the contribution of GTPase activity has received less attention. The GTPase domain has been shown to play an important role in regulating kinase activity, in dimerization, and in mediating the neurotoxic effects of LRRK2. Accordingly, the GTPase domain has emerged as a potential therapeutic target for inhibiting the pathogenic effects of LRRK2 mutations. Many important mechanisms remain to be elucidated, including how the GTPase cycle of LRRK2 is regulated, whether GTPase effectors exist for LRRK2, and how GTPase activity contributes to the overall functional output of LRRK2. In this review, we discuss the importance of the GTPase domain for LRRK2-linked PD focusing in particular on its regulation, function, and contribution to neurotoxic mechanisms.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Animais , GTP Fosfo-Hidrolases/química , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Multimerização Proteica , Estrutura Terciária de Proteína
9.
Neurobiol Dis ; 77: 49-61, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25731749

RESUMO

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset, autosomal dominant Parkinson's disease (PD). LRRK2 contains functional GTPase and kinase domains. The most common G2019S mutation enhances the kinase activity of LRRK2 in vitro whereas G2019S LRRK2 expression in cultured neurons induces toxicity in a kinase-dependent manner. These observations suggest a potential role for kinase activity in LRRK2-associated PD. We have recently developed a novel rodent model of PD with progressive neurodegeneration induced by the adenoviral-mediated expression of G2019S LRRK2. In the present study, we further characterize this LRRK2 model and determine the contribution of kinase activity to LRRK2-mediated neurodegeneration. Recombinant human adenoviral vectors were employed to deliver human wild-type, G2019S or kinase-inactive G2019S/D1994N LRRK2 to the rat striatum. LRRK2-dependent pathology was assessed in the striatum, a region where LRRK2 protein is normally enriched in the mammalian brain. Human LRRK2 variants are robustly expressed throughout the rat striatum. Expression of G2019S LRRK2 selectively induces the accumulation of neuronal ubiquitin-positive inclusions accompanied by neurite degeneration and the altered distribution of axonal phosphorylated neurofilaments. Importantly, the introduction of a kinase-inactive mutation (G2019S/D1994N) completely ameliorates the pathological effects of G2019S LRRK2 in the striatum supporting a kinase activity-dependent mechanism for this PD-associated mutation. Collectively, our study further elucidates the pathological effects of the G2019S mutation in the mammalian brain and supports the development of kinase inhibitors as a potential therapeutic approach for treating LRRK2-associated PD. This adenoviral rodent model provides an important tool for elucidating the molecular basis of LRRK2-mediated neurodegeneration.


Assuntos
Adenoviridae/fisiologia , Corpo Estriado/patologia , Mutação/genética , Doença de Parkinson/genética , Doença de Parkinson/patologia , Proteínas Serina-Treonina Quinases/genética , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Feminino , Membro Anterior/fisiopatologia , Regulação da Expressão Gênica/genética , Glicina/genética , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson/fisiopatologia , Fosfopiruvato Hidratase/metabolismo , Ratos , Ratos Wistar , Serina/genética , Fatores de Tempo , Transdução Genética , Tubulina (Proteína)/metabolismo , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...